Universal finite-sample effect on the perturbation growth in chaotic dynamical systems.
نویسندگان
چکیده
The finite-sample effect on the growth of moments of the perturbation observed in numerical simulations of chaotic dynamical systems is studied. To numerically estimate the moments, only a limited number of sample trajectories can be utilized, and therefore the moments exhibit pure exponential growth only initially, and give way to relaxed growth thereafter. Such transition is a consequence of the unobservability of rare events in finite sample sets. Using the large-deviation formalism for chaotic time series, we estimate the relaxation time and derive the post-relaxation growth law. We demonstrate that even after the relaxation, each moment still obeys a universal growth law of different type, which reflects physical information on the statistics of chaotic expansion rates.
منابع مشابه
LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملCOUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS
In the following text for arbitrary $X$ with at least two elements, nonempty countable set $Gamma$ we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map. We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney, exact Dev...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 74 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2006